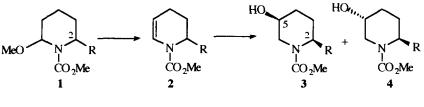
Hydroboration of Enecarbamates and the Synthesis of β-Hydroxypiperidine Alkaloids

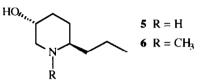

Mark Plehiers and Claude Hootelé* Organic Chemistry Department, Faculty of Sciences University of Brussels, B-1050 Brussels (Belgium).

Abstract: The β -hydroxypiperidine alkaloids 5, 6 and 8 were diastereoselectively synthesized using hydroboration of enecarbamates 2b-c as a key step.

 α -Methoxy carbamates 1 are conveniently prepared through anodic methoxylation of carbamates and have proven to be valuable intermediates for the synthesis of 2- and 2,6-substituted piperidine derivatives^{1,2,3,5}. Under acidic and thermolytic conditions⁴, they furnish the enecarbamates 2 which, although less reactive than enamines, react with several electrophiles. It was shown earlier⁴ that hydroboration made possible the introduction of a hydroxyl group into the β position of enecarbamates but, except for the case of a pyrroline derivative, the stereochemistry of the alcohols was not established.

In this communication, we wish to report hydroboration of enecarbamates as a key step for the stereoselective synthesis of both *cis* and *trans* β -hydroxypiperidine derivatives.

The α -methoxy carbamates $1a^2$, 1b and $1c^5$ were prepared in high yield by anodic oxidation of carbamates in methanol⁶; we found that the corresponding enecarbamates **2a-c** can be obtained efficiently (90-95% yield) by treatment of **1a-c** with p-toluenesulfonic acid (10% w/w) in benzene at room temperature. The hydroboration-oxidation sequence ⁷ was applied to racemic **2a-b** and to optically pure **2c** (2S,8S) and furnished the diastereomeric alcohols **3a-c** and **4a-c** which could be quantitatively separated by flash chromatography and were fully characterized⁸.


a: $\mathbf{R} = CH_3$ **b**: $\mathbf{R} = CH_2$ - CH_2 - CH_3 **c**: $\mathbf{R} = CH_2$ -CH(OAc)- C_6H_5

The results, summarized in Table I, show that the major product in each case is the 2,5-*trans* isomer resulting from the preferential attack of the borane from the less hindered side of the molecule; at low temperature the selectivity is high. On the other hand, it appears that hydroboration does not proceed to the trialkylborane stage, as it is generally observed with hindered olefins⁹.

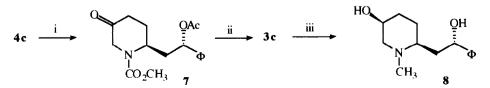

Entry	Enecarba- mate	BH3:SMe ₂ / Enecarbamate	Time	Temp.	Global yield (3+4)	Ratio 3/4
1	2a	0.3	15 h	20°C	47%	-
2	2a	1	15 h	20°C	74%	-
3	2a	1	1h	20°C	79%	1:2
4	2b	1	16h	-78°->0°C	71%	1:6
5	2 c	1	1h	20°	75%	1:2

Table I:	Hydro	boration	of	enecarbamates	2a-c
----------	-------	----------	----	---------------	------

The protective group of **4b** was removed by treatment with TMSI in dichloromethane to furnish racemic pseudoconhydrine **5** (89% yield) or reduced with LiAlH₄ (in refluxing THF) to give racemic N-methylpseudoconhydrine **6** (80% yield)¹⁰.

Hydroboration appears therefore as an efficient route for the synthesis of *trans* 5-hydroxypiperidine derivatives 4. In order to increase the yield in the *cis* compounds 3, a process of inversion at C-5 in 4 was developed based on the stereoselective reduction (NaBH₄) of the ketones resulting from oxidation of the alcohols¹¹; the method is illustrated by the synthesis of (-)-5-hydroxysedamine 8^{12} from 4c.

i: PCC/Aluminium oxide (3 eq.), dichloromethane, reflux 1h. (80% yield); ii: NaBH4, EtOH, 0°C (75%); iii: LiAlH4, THF, reflux 16 h. (80%).

Acknowledgments. M.P. wishes to thank the "Institut pour l'Encouragement de la Recherche Scientifique dans l'Industrie et l'Agriculture" (IRSIA, Belgium); C.H. is a Research Associate of the National Fund for Scientific Research (FNRS, Belgium).

References and Notes.

- 1 Shono, T.; Hamaguchi, H.; Matsumura, Y. J. Am. Chem. Soc. 1975, 97, 4264-4268.
- 2 Shono, T.; Matsumura, Y.; Tsubata, K. J. Am. Chem. Soc. 1981, 103, 1172-1176.
- 3 Durant , A.: Hootelé, C. Can. J. Chem. 1992, 70, 2722-2725.
- 4 Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.; Yamane, S.; Kanazawa, T.; Aoki, T. J. Am. Chem. Soc. 1982, 104, 6697-6703.
- 5 Driessens, F.; Hootelé, C. Can. J. Chem. 1991, 69, 211-217.
- 6 The anodic methoxylations were carried out in methanol containing Et₄NOTs; a constant potential of 8V was applied between the carbon electrodes.
- 7 In a typical experiment, 0.32 mL of a 2M THF solution of BH₃.SMe₂ (0.64 mmol) were added to a solution of **2a** (100 mg; 0.64 mmol) in dry THF (10 mL) under nitrogen. After one hour, the excess of hydride was decomposed by addition of 5 drops of water and the organoboranes were oxidized by addition of 1 mL of a 3N NaOH solution followed by 1 mL of 30% H₂O₂. After one hour, extractive work-up and flash chromatography (Ethyl acetate/ hexane 2:1) afforded pure **3a** (30 mg) and **4a** (58 mg).
- 8 All compounds were identified by IR, NMR and mass spectra. ¹H NMR data of representative compounds (250 MHz, CDCl₃): **3a**: δ ppm 1.1 (d, J=7 Hz, 3H, CH₃), 1.2-2.3 (m, 5H), 2.6 (dd, J=13 and 10 Hz, 1H, H6ax.), 3.6 (m, 1H, H5), 3.7 (s, 3H, NCO₂CH₃), 4.1 (ddd, J=13, 5 and 1 Hz, 1H, H6eq.), 4.3 (m, 1H, H2); **4a**: δ ppm 1.1 (d, J=7Hz, 3H, CH₃), 1.2-2.2 (m, 5H), 3.1 (dd, J=14 and 2Hz, 1H, H6ax.), 3.7 (s, 3H, NCO₂CH₃), 3.9 (m, 1H, H5), 4.0 (broad d, J=14Hz, 1H, H6eq.), 4.4 (m, 1H, H2); Acetyl **3a**: δ ppm 4.6 (tt, J=10 and 5 Hz, 1H, H5); acetyl **4a**: δ ppm 4.8 (m, 1H, H5).
- 9 Brown, H.C. Organic Syntheses via Boranes, John Wiley & Sons, New York, 1975.
- 10 A stereoselective synthesis of **5** and **6** based on anodic oxidation in AcOH has been described earlier: Shono. T.; Matsumura, Y.; Onomura, O.; Kanazawa, T.; Habuka, M. Chemistry Letters **1984**, 1101-1104. The convenience and overall yield of this sequence and ours are comparable.
- 11 We observed that the ketones are obtained in higher yield from the corresponding alcohols rather than by direct oxidation of the intermediate boranes with PCC. As expected, reduction with NaBH₄ yielded mainly (de: 85%) the equatorial alcohol.
- 12 The spectral properties and the rotation of the synthetic compound are identical to those of the alkaloid isolated from *Sedum acre*: Ibebeke-Bomangwa, W.; Hootelé, C. *Tetrahedron* **1987**, *43*, 935-945.